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Abstract
The input pulse of the laser PEARL with energy of 18 J and pulse duration of about 60 fs was compressed to 10 fs after
passage through a 4-mm-thick KDP crystal and reflection at two chirped mirrors with sum dispersion of −200 fs2. The
experiments were performed for the B-integral values from 5 to 19 without visible damage to the optical elements, which
indicates that small-scale self-focusing is not a significant issue. It was shown that, by virtue of the low dispersion of the
group velocity, the KDP crystal has some advantages over silica: a larger pulse compression coefficient, especially at a
small value of the B-integral (B = 5, . . ., 9), lower absolute values of chirped mirror dispersion, and also a possibility to
control the magnitude of nonlinearity and dispersion by changing crystal orientation.
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1. Introduction

The power and, hence, the focal intensity of petawatt and
multipetawatt lasers are currently limited by the size and
damage threshold of compressor diffraction gratings[1]. A
multifold power enhancement can be achieved using mosaic
gratings in the compressor or several parallel chirped pulse
amplification (CPA) channels, each of which ends with a
conventional compressor of its own. In these cases, the power
of the pulse increases as a result of increasing energy, while
its duration remains unchanged. This approach entails a
multiple increase in complexity, size, and price. An alter-
native recently developing approach, within the framework
of which power is enhanced due to reduced pulse duration
after the compressor, rather than due to energy increase,
is free from these drawbacks. This approach has differ-
ent names/acronyms: thin film compression (TFC)[2], com-
pression after compressor approach (CafCA)[3], or post-
compression[4]. The corresponding technique is as follows:
the pulse spectrum is broadened as a result of self-phase
modulation (SPM) during propagation in a medium with
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Kerr nonlinearity and is then compressed due to reflection
from chirped mirrors (CMs) with negative dispersion.

The idea to use cubic nonlinearity for SPM was proposed
as early as in 1969[5]. The compression of a 20 ps pulse by
several times was demonstrated in Ref. [6]. Later, nonlinear
compression was obtained in the femtosecond range in a
fiber[7], in hollow waveguides filled with gas[8], and in bulk
material bounded in the transverse direction[9]. Despite a
huge number of works (see, for example, references in
the review paper Ref. [3]), pulses were compressed only
with millijoule energy, and the energy efficiency was less
than 50%. In the recent years, quite a few experimental
results were obtained[10–17], in which CafCA was success-
fully implemented for pulses with an energy of 1–18 J and
energy efficiency close to 100%. An important impetus for
these studies was the proposed and experimentally con-
firmed method of suppressing small-scale self-focusing[18,19],
even at large values of the B-integral

B = (2π/λ0)Ln2Iin, (1)

where n2 and L are, respectively, the nonlinear index of
refraction and the thickness of the nonlinear medium,
λ0=2πc/ω0 is the central wavelength in vacuum, and Iin

is the input peak intensity. In particular, in Ref. [17] the
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experiments were performed for the B-integral values
up to 19. Large values of B-integral enable a significant
increase of the compression ratio. Also noteworthy are
the demonstration of two-stage compression[20,21] and the
theoretical works on detailed numerical modeling[2,22,23] and
on expanding the capabilities of the technique aimed at
simultaneous contrast enhancement[24–28].

In experiments, different materials were used as a nonlin-
ear medium, e.g., glass[10], polyethylene terephthalate[11], but
in the majority of works it was silica[12–17]. As shown in Ref.
[3], a compressed pulse will be shorter at a minimal ratio
of the group velocity dispersion k2 to the nonlinear index of
refraction n2. A decrease in k2/n2 is especially important for
large B-integral values at which pulse spectrum is broadened
markedly by SPM. Among the materials that can be used for
SPM in high-power lasers, silica and BK7 glass have a small
value of k2/n2: approximately 1 fs2 PW/mm3 at a wavelength
of 910 nm. For many glasses, isotropic and anisotropic crys-
tals, k2/n2 is in the 1.5–2.5 fs2·PW/mm3 range. An exception
is a KDP crystal (ordinary wave), as its dispersion at a
wavelength of 910 nm is only 11.3 fs2/mm, which is a factor
of 2.5 less than that of silica while n2, in contrast, is higher
than in silica; for KDP k2/n2=0.25 fs2·PW/mm3.

In the presented work we experimentally studied the com-
pression of an output pulse of the laser PEARL (PEtawatt
pARametric Laser[29]) by SMP in a KDP crystal in a wide
range of B-integral values from 5 to 19 and compared the
obtained results with those using silica[15,17,20].

2. Features of nonlinear compression with the use of
KDP

All the aspects of nonlinear compression (spectrum broaden-
ing, pulse shortening, and peak intensity increase) were con-
sidered in detail in Ref. [3] as a function of two key param-
eters: the B-integral (Equation (1)) and the dimensionless
parameter of nonlinear medium dispersion

D = L
k2

T2
F
, (2)

where TF is the full width at half maximum (FWHM) dura-
tion of the input Fourier-transform-limited (FTL) Gaussian
pulse. The parameters B and D characterize nonlinearity and
dispersion and have a simple physical meaning: B is the ratio
of the medium length L to the nonlinear length (the length
at which a nonlinear phase equal to 1 is accumulated) and
D is the ratio of L to the dispersion length Ld = TF

2/k2. The
KDP crystal at the wavelength λ = 910 nm has a very small
value of k2 = 11.3 fs2/mm. Hereinafter, we use the Sellmeier
equation from Ref. [30]. Moreover, k2 reduces with growing
λ and at λ = 985 nm changes its sign. Consequently, not only
group velocity dispersion k2 but also the next, third-order
dispersion (TOD) should be taken into account. For silica,

the value of k2 is much higher (28 fs2/mm). However, as we
show in the following, at large B values the effect of TOD is
even more significant.

With allowance for TOD, the laser pulse propagation in a
medium with Kerr nonlinearity is described by the equation

∂a
∂ξ

− i ·D
2

∂2a
∂η2 + T

6
∂3a
∂η3 =− iB

(
|a|2 ·a− 2 · i

π ·N
∂

∂η

(|a|2 ·a
))

,

(3)

where ξ =z/L, z is the longitudinal coordinate, L is the thick-
ness of the plate, η =(t-z/u)/TF, 1

u = ∂k(ω)

∂ω

∣∣∣
ω=ω0

, a=A/A10 is

the complex amplitude of the field normalized to the value
at the input boundary (A10), T=Lk3/TF

3 is the dimensionless
parameter TOD, k3 = 1

2k0

∂3k(ω)2

∂ω3

∣∣∣
ω=ω0

, k(ω)=n(ω)ω/c is the

wave vector, k0=k(ω0), N=TF/τ , and τ =2π /ω0 is the period
of the optical field. At the input of the nonlinear medium, let
there be a Gaussian FTL pulse

a(t,z = 0) = e
−2·ln(2)· t2

T2
F . (4)

CMs introduce a quadratic spectral phase; thereby the field
amplitude of the output (compressed) pulse aout is defined by

aout(t) = F−1
(

e− iα·
2
2 ·F (a(t,z = L))

)
. (5)

where 
 = ω – ω0, α is the parameter of CM dispersion,
and F and F–1 are the direct and inverse Fourier trans-
forms. The quantity αopt designates the value of α at which
the compressed pulse intensity Iout is maximal, and hence,
the intensity increase factor Fi = Iout/Iin is also maximal. The
numerical modeling (Equations (3)–(5)) was performed for
KDP and silica with the parameters given in Table 1. Values
of B were varied from 0 to 20 by changing the input pulse
intensity Iin. Here B = 10 corresponds to an intensity of
0.79 TW/cm2 for KDP and 1.18 TW/cm2 for silica. Curves
for αopt(B) are plotted in Figure 1(a). The dashed curves
for k3 = 0 are given for comparison. Analogous curves for
Fτ = τ in/τo and Fi at α = αopt are plotted in Figures 1(b)
and 1(c).

Table 1. The parameters of numerical modeling.

Parameter Units KDP Silica
L mm 4 5
k2 fs2/mm 11.3 27.7
D 0.01 0.037
k3 fs3/mm 123.7 106
T 0.0022 0.0023
n2 10–16 cm/W 4.6 2.45
λ0 nm 910
TF fs 61
N 20.1
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Figure 1. Curves for (a) αopt(B), (b) Fτ (B), and (c) Fi(B) for α = αopt for KDP (blue) and silica (red): FTL pulse at k3 �= 0 (solid curves) and k3 = 0 (dashed
curves); non-Gaussian FTL pulse, the spectrum and autocorrelation function of which are presented in Figure 3(a) (dotted curves). FTL, Fourier-transform-
limited.

It is clear from Figure 1(a) that at large B the allowance
for TOD in KDP (in contrast to silica) results in an increase
in the absolute value of αopt, which should be taken into
consideration when planning experiments. In addition, with
TOD taken into account, both Fτ and Fi become much
larger for both KDP and silica. This is quite unexpected.
Physically this is explained by the fact that at SPM the
pulse acquires not only a positive quadratic spectral phase
that is compensated by the negative quadratic dispersion
of CMs, but also a negative cubic spectral phase that is
partially compensated for by the positive cubic dispersion
of the medium. As the values of T are identical for KDP
and silica (see Table 1), the effect of TOD on these media is
approximately the same (see Figures 1(a)–1(c)).

3. Experimental results

The schematic diagram of the experiment is shown in Fig-
ure 2. After reflection from the last diffraction grating of the
compressor, the PEARL laser beam (central wavelength of
about 910 nm) with a pulse energy of up to 18 J, a duration
of 55–67 fs, and a diameter of 18 cm propagated 2.5 m
in free space for self-filtering[18]. After that, the beam was
propagated in a 4-mm-thick homemade KDP crystal with
angles of optical axes θ = ϕ = 0. The output surface had an
anti-reflecting coating. We used the reflection from the input
uncoated surface to measure the spectrum and the autocorre-
lation function (ACF) of the input pulse. The measurements
were made for a small part of the beam with a diameter of
1 cm. After free propagation over a distance of 6 m, the
beam was reflected from CMs with a diameter of 20 cm
manufactured by UltraFast Innovations GmbH (reflection
coefficient >99%, bandwidth >200 nm). We used mirrors
with sum dispersion α = −100 fs2, −200 fs2, and −250 fs2.
In addition, in the experiments with α = −200 fs2 and
−250 fs2 we placed a 1-mm-thick silica plate before the auto-
correlator to introduce additional dispersion α = +28 fs2,

which is equivalent to the sum CMs dispersion α = −172 fs2

and −222 fs2, respectively.
To measure the parameters of the output (compressed)

pulse, a glass wedge (GW) with an aperture of 1 cm ×
2 cm and a matt back surface was placed in the beam
path. The beam reflected from the first surface of the wedge
was directed to the spectrometer and the autocorrelator. The
position of the wedge within the beam aperture corresponded
to the place where the ACF and the spectrum of the input
beam were measured, which made it possible to measure the
characteristics of the input and output pulses in a single shot.
We used 1.42 as a decorrelation factor to calculate the pulse
duration from the autocorrelation function.

Typical measurement results are presented in Figure 3
for two shots at α = −200 fs2. The output pulse spectra
have characteristic narrow peaks arising because the input
pulses are not FTL (see Ref. [23] for details). Note
that the measured output pulse spectrum is bounded
at the longwave side by the spectrometer bandwidth
(1030 nm).

An yoptimal value of CMs dispersion αopt depends on
B (see Figure 1(a)). The curves for the minimal duration
of a compressed pulse τout as a function of α for two
ranges B = 5, . . ., 9 and B = 11, . . ., 19 are plotted in
Figure 4. Analogous curves for 5-mm-thick and 3-mm-thick
silica[15,20] are also presented in this figure. Note that these
are qualitative data, as a different number of shots were made
for different values of α. Nevertheless, some conclusions
follow from Figure 4. First, the value of αopt decreases with
a decrease in the parameter D: αopt is maximal for 5-mm-
thick silica (D = 0.037 at τ in = 61 fs) and minimal for KDP
(D = 0.01 at τ in = 61 fs). The difference is not very large
for large values of B, but is significant for small B. This
fully agrees with Figure 1(a). Second, the absolute values of
αopt obtained experimentally are larger than those predicted
theoretically (see Figure 1(a)). The reason is that the pulse
used in experiments was not an FTL pulse. The absolute
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Figure 2. Schematic of the experiment. CM, chirped mirror; GW, small-aperture glass wedge; AC, autocorrelator; S, spectrometer.

Figure 3. Measured input (blue) and output (red) spectra and ACF for two typical shots: (a) B = 13, τ in = 67 fs, τout = 10.9 fs and (b) B = 14, τ in = 57 fs,
τout = 10.1 fs.

value of αopt for such pulses is much larger than for FTL
pulses, which was first noted in Ref. [11]. To illustrate this
fact, we presented in Figure 1(a) an αopt(B) curve for a KDP
crystal for the case when the input pulse has the spectrum
and ACF shown in Figure 3(a): the dotted blue curve is lower

than the solid curve. Third, from the viewpoint of minimal
pulse duration, KDP, although slightly, is preferable to silica:
10 versus 11 fs at large values of B and 13 versus 16 fs at small
B. This also agrees with the results of numerical modeling
(see Figure 1).
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Figure 4. Experimental minimal compressed pulse duration τout for KDP (L = 4 mm), silica (L = 5 mm), and silica (L = 3 mm[15,20]) for two ranges of B
values. The curves are plotted to make the figure more illustrative.

Figure 5. Output pulse duration τout (blue) and pulse compression factor Fτ = τ in/τout (red) at α = −200 fs2; τ in = 55, . . ., 67 fs.

The experimental data for τ in=55, . . ., 67 fs obtained at
α = −200 fs2 are presented in Figure 5. The peak power Pout

for a compressed pulse with τout = 10 fs was 1.5 PW (we took
into account the 20% losses associated with a lower intensity
at the beam periphery and the respective larger τout). Despite
the spread in the values in Figure 5, we can claim that
at α = −200 fs2 there exists an optimal value of the
B-integral (of the order of 15) at which τout is minimal and
Fτ is maximal. With a further increase in B, the input pulse
spectrum is broadened but, despite this fact, τout increases as
|αopt| is already less than 200 fs2, that is, CMs have redundant
dispersion, as a result of which the output pulse is negatively
chirped. At the same time, Figure 5 demonstrates that in a
wide range of B-integral values from 11 to 19, for the same
CMs set (α = −200 fs2), all the shots are within the interval

of τout from 9.3 to 13.6 fs and Fτ from 4.6 to 7. From the
practical point of view, this spread is not very large and can
be made even less if the input pulse has more stable duration
and spectral phase.

Despite the huge values of the B-integral, no damage
was observed either in KDP or in CMs, that is, small-
scale self-focusing was not a significant issue. One of the
reasons for this is a significant shift of the maximum of
the increment of self-focusing instability to the region of
high spatial frequencies, which results in a reduced noise
power in the region of the maximal increment due to a
decrease in the spectral density of the noise[31] and beam
self-filtering at free propagation[18,19,31,32]. Another possible
reason is the convective nature of the self-focusing instability
at pulse duration commensurate with 10 field periods[33,34].



6 A. Shaykin et al.

The suppression of small-scale self-focusing is discussed in
more detail in Ref. [3].

Note that further power scaling may be limited by dam-
age threshold which strongly depends on the polishing and
coating quality. Being a water-soluble crystal, KDP requires
more efforts for both polishing and coating compared with
silica. In addition, there could be crystal degradation effects
on a longer term. This could limit the use of KDP in high
peak power femtosecond lasers with high repetition rate.

Thus, we have experimentally demonstrated that KDP can
give results similar to (τ in/τout > 6), and even a little better
(τout = 10 fs) than those we have recently obtained with
silica[17], with the superiority of KDP being still more pro-
nounced for small B-integrals (B = 5, . . ., 9) (see Figure 4).
In addition, KDP has a number of other advantages. First,
for KDP the αopt values are smaller (Figures 1(a) and 4).
This allows a smaller number of mirrors to be used or the
same number of mirrors but with lower dispersion, which
are easier to produce. Second, for KDP the value of αopt

changes less with the variation of the B-integral (Figure 4).
This makes it possible to use one set of CMs for a wide
range of intensities, as demonstrated in Figure 5. Third,
KDP anisotropy enables controlling linear and nonlinear
properties of the material by choosing crystal orientation that
is determined by the angles θ and ϕ. Like in any uniaxial
crystal, the linear refractive index (and, hence, k2 and k3) of
an ordinary wave depends neither on θ nor on ϕ. However,
similarly to any tetragonal crystal of 422 symmetry, n2

does not depend on θ , but is dependent on ϕ[35], and n2

maxima and minima are, respectively, at ϕ = 0+πm/2 and
ϕ = π /4+πm/2 (m is an integer). Thus, for example, by
rotating a z-cut crystal (θ = 0) around the z-axis it is possible
to continuously change the B-integral by about a factor of
1.5: n2(θ = 0, ϕ = 0) = 4.6 × 10–16 cm2/W, and n2(θ = 0,
ϕ = π /4) = 3.3 × 10–16 cm2/W[36]. Still more opportunities
are provided by an extraordinary wave for which k2 and k3

depend on θ , and n2 depends on both θ and ϕ. The n2(θ ,
ϕ) function can be found in Ref. [35]. The functions k2(θ )
and k3(θ ) can be readily obtained from the known expression
for ne(θ ) and from the Sellmeier equations[30]. Thus, for
an extraordinary wave, dispersion and nonlinearity can be
controlled independently by varying θ and ϕ, respectively.
Note that it is also possible to use a KDP crystal isomorph:
a DKDP crystal whose dispersion strongly differs from KDP
dispersion[37]. The optimization of the parameters k2, k3, and
n2 will be considered in a separate paper.

4. Conclusion

In our studies of the nonlinear compression of high-power
laser pulses (TFC, CafCA, post-compression) after SPM in a
KDP crystal we have obtained the pulse compression factor
τ in/τout > 6 with the compressed pulse duration τout = 10 fs,
which corresponds to a peak power of 1.5 PW. To the best

of the authors’ knowledge, 10 fs is the shortest duration of
all present-day petawatt lasers worldwide. It is important
to note that the experiments were carried out for the B-
integral values from 5 to 19, with no damage to the optical
elements, which indicates that small-scale self-focusing is
insignificant. Analogous results were recently obtained by
our team using silica[17]. However, as compared with silica,
KDP has several advantages: (i) a larger pulse compression
factor τ in/τout, especially for B = 5, . . ., 9; (ii) smaller abso-
lute values of CMs dispersion αopt; (iii) smaller changes in
αopt with the variation of the B-integral; and (iv) a possibility
to control both linear and nonlinear properties of the medium
by choosing the orientation of the crystal’s optical axis and
the radiation polarization.

Taking into account the obtained results and the undoubted
merits of nonlinear compression (simplicity, low cost,
negligible pulse energy losses, and applicability to any
high-power laser), we predict further development of this
approach toward multipetawatt power and single-cycle pulse
duration simultaneously.
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